Pollinator Campaign -- Scientific Study Index

Author	Year	Title	Journal	Issue
Ahmed et al	2013	Does insecticide application in a winter oilseed rape field influence the abundance of pollen beetle <i>Meliaethes geneus</i> in nearby ornamental flowers and vegetables?	Pest Management Science	In press
Alaux et al	2010	Interactions between <i>Nosema</i> microspores and a neonicotinoid weaken honeybees (<i>Apis mellifera</i>)	Environmental Microbiology	12(3): 774-782
Alexander & Culp	2013	Predicting the Effects of Insecticide Mixtures on Non-Target Aquatic Communities	Chapter in "Insecticides: Development of Safer and More Effective Technologies"	n/a
Aufauvre et al	2012	Parasite-insecticide interactions: a case study of <i>Nosema ceranae</i> and fipronil synergy on honeybee	Nature Scientific Results	2(326): 1-7
Bacandritsos et al	2010	Sudden deaths and colony population decline in Greek honey bee colonies	Journal of Invertebrate Pathology	105: 335-340
Barmaz et al	2012	Exposure of pollinators to plant protection products	Ecotoxicology	21:2177-2185
Belzunces et al	2012	Neural effects of insecticides in the honey bee	Apidologie	43: 348-370
Bernal et al	2010	Overview of Pesticide Residues in Stored Pollen and Their Potential Effect on Bee Colony (<i>Apis mellifera</i>) Lossses in Spain	Journal of Economic Entomology	103(6): 1964-1971
Biesmeijer et al	2006	Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands	Science	313: 351-354
Blacquiere et al	2012	Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment	Ecotoxicology	21: 973-992
Bottger et al	2013	Effects of low-dosed imidacloprid pulses on the functional role of the caged amphipod <i>Gammarus roeseli</i> in stream mesocosms	Ecotoxicology and Environmental Safety	93: 93-100
Cameron et al	2010	Patterns of widespread decline in North American bumble bees	Proceedings of the National Academy of Sciences	In press
Colla et al	2012	Assessing declines of North American bumble bees (Bombus spp.) using museum specimens	Biodiversity Conservation	21(14): 3585-3595
Cox et al	2007	The Effect of Clothianidin Seed Treatments on Corn Growth following Soybean	Crop Science	47: 2482-2485
Cresswell	2011	A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees	Ecotoxicology	20(1): 149-157
Cresswell et al	2012	Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill's epidemiological criteria.	Pest Management Science	68(6): 819-27
Cresswell et al	2012	Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid).	Zoology	115(6): 365-71
Decourtye	2004	Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.)	Pesticide Biochemistry & Physiology	78: 83-92
Decourtye et al	2004	Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions	Ecotoxicology and Environmental Safety	57: 410-419
Dittbrenner et al	2011	Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (<i>Aporrectodea caliginosa</i> and <i>Lumbricus terrestris</i>) by using 2D and 3D post-exposure techniques	Chemosphere	84: 1349-1355
Easton & Goulson	2013	The Neonicotinoid Insecticide Imidacloprid Repels Pollinating Flies and Beetles at Field-Realistic Concentrations	PLoS ONE	8(1): e54819
Eiri & Nieh	2012	A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing	The Journal of Experimental Biology	215(12): 2022-2029

El Hassani et al	2008	Effects of Sublethal Doses of Acetamiprid and Thiamethoxam on the Behavior of the Honeybee (<i>Apis mellifera</i>)	Archives of Environmental Conservation and Toxicology	54(4): 653-661
Gill et al	2012	Combined pesticide exposure severely affects individual- and colony-level traits in bees	Nature	0(0): 1-5
Girolami et al	2009	Translocation of Neonicotinoid Insecticides from Coated Seeds to Seedling Guttation Drops: A Novel Way of Intoxication for Bees	Journal of Economic Entomology	102(5): 1808-1815
Hatjina et al	2013	Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythym of honeybees in vivo	Apidologie	44(4): 467-480
Hayasaka et al	2011	Differences in ecological impacts of systemic insecticides with different physiochemical properties on biocenosis of experimental paddy fields	Ecotoxicology	21: 191-201
Hayasaka et al	2012	Differences in susceptability of five cladoceran species to two systemic insecticides, imidacloprid and fipronil	Ecotoxicology	21: 421-427
Henry et al	2012	A Common Pesticide Decreases Foraging Success and Survival in Honey Bees	Science	336(6079): 348-350
Hoffman & Castle	2012	Imidacloprid in Melon Guttation Fluid: A Potential Mode of Exposure for Pest and Beneficial Organisms	Journal of Economic Entomology	105(1): 67-71
Jeschke et al	2011	Overview of the Status and Global Strategy for Neonicotinoids	Journal of Agricultural and Food Chemistry	59: 2897-2908
Jinguji et al 2013	2013	Effect of imidacloprid and fipronil pesticide application on <i>Sympetrum infuscatum</i> larvae and adults	Paddy and Water Environment	11(1-4): 277-284
Johnson et al	2010	Pesticides and honey bee toxicity USA	Apidologie	41: 312-331
Kreutzweiser et al	2009	Imidacloprid in leaves from systemically treated trees may inhibit litter breakdown by non-target invertebrates	Ecotoxicology and Environmental Safety	72: 1053-1057
Krupke et al	2012	Multiple Routes of Exposure for Honey Bees Living Near Agricultural Fields	PLoS ONE	7(10): e29268
Laycock et al	2012	Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (<i>Bombus terrestris</i>)	Ecotoxicology	21(7): 1937-1945
Lukancic et al	2010	Effects of Exposing Two Non-Target Crustacean Species, Asellus aquaticus L., and Gammarus fossarum Koch., to Atrazine and Imidacloprid	Bulletin of Environmental Contamination and Toxicology	84: 85-90
Malev et al	2012	Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non- target aquatic organisms: Microalgae <i>Desmodesmus subspicatus</i> and amphipod <i>Gammarus</i> <i>fossarum</i>	Pesticide Biochemistry & Physiology	104(3): 178-186
Matsumoto	2013	Reduction in homing flights in the honey bee <i>Apis mellifera</i> after a sublethal dose of neonicotinoid insecticides	Bulletin of Insectology	66(1): 1-9
Miao et al	2013	Sublethal Effects of Four Neonicotinoid Seed Treatments on the Demography and Feeding Behavior of the Wheat Aphid, <i>Sitobion avenae</i>	Pest Management Science	In press
Mineau & Whiteside	2013	Pesticide Acute Toxicity Is A Better Correlate of US Grassland Bird Declines than Agricultural Intensification	PLoS ONE	8(2): e57457
Mullin et al	2005	Toxic and Behavioral Effects to Carabidae of Seed Treatments Used on Cry3Bb1- and Cry1Ab/c- Protected Corn	Environmental Entomology	34(6): 1626-1636
Nauen et al	2003	Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants	Pesticide Biochemistry and Physiology	76(2003): 55-69
Oliveira et al	2011	Desensitization of nicotinic acetylcholine receptors in the central nervous system neurons of the stick insect (<i>Carausius morosus</i>) by imidacloprid and sulfoximine insecticides	Insect Biochemistry and Molecular Biology	41(2011): 872-880
Oliveira et al	2012	Side-Effects of Thiamethoxam on the Brain and Midgut of the Africanized Honeybee Apis mellifera	Environmental Toxicology	

Orantes-Bermejo et al	2010	Pesticide residues in beeswax and beebread samples collected from honey bee colonies (<i>Apis mellifera</i>) in Spain. Possible implications for bee losses	Journal of Apicultural Research	48(1): 243-250
Osborne	2012	Bumblebees and pesticides	Nature	491: 43-45
Palmer et al	2013	Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees	Nature Communications	4(2013): 1634
Pestana et al	2009	Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms	Environmental Pollution	157(2009):2328–2334
Pestana et al	2009	Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk	Aquatic Toxicology	93(2009): 138–149
Pettis et al	2012	Pesticide exposure in honey bees results in increased levels of the guy pathogen Nosema	Naturwissenschaften	99(2012):153–158
Reetz et al	2011	Neonicotinoid insecticides translocated in guttated droplets of seed-treated maize and wheat: a threat to honeybees?	Apidologie	42(5): 596-606
Roessink et al	2013	The Neonicotinoid Imidacloprid Shows High Chronic Toxicity to Mayfly Nymphs	Environmental Toxicology and Chemistry	32(5): 1096-1100
Rossi et al	2013	Brain Morphophysiology of Africanized Bee Apis mellifera Exposed to Sublethal Doses of Imidacloprid	Archives of Environmental Contamination and Toxicology	April(2013): 1-10
Sanchez-Bayo et al	2013	Impact of Systemic Insecticides on Organisms and Ecosystems	Insecticides - Development of Safer and More Effective Technologies	Ch. 13
Sardo & Soares	2010	Assessment of the Effects of the Pesticide Imidacloprid on the Behaviour of the Aquatic Oligochaete <i>Lumbriculus variegatus</i>	Archives of Environmental Contamination and Toxicology	58:648–656
Scott-Dupree et al	2009	Impact of Currently Used or Potentially Useful Insecticides for Canola Agroecosystems on Bombus impatiens, Megachile rotundata, and Osmia lignaria	Journal of Economic Entomology	102(1):177-182
Seagraves & Lundgren	2012	Effects of neonicotinoid seed treatments on soybean aphid and its natural enemies	Journal of Pest Science	85:125-132
Sgolastra et al	2012	Effects of neonicotinoid dust from maize seed-dressing on honey bees	Bulletin of Insectology	65(2): 273-280
Skerl et al	2009	Residues of Pesticides in Honeybee (<i>Apis mellifera carnica</i>) Bee Bread and in Pollen Loads from Treated Apple Orchards	Bulletin of Environmental Contamination and Toxicology	83: 374-377
Smith et al	2013	Effects of Aldicarb and Neonicotinoid Seed Treatments on Twospotted Spider Mite on Cotton	Journal of Economic Entomology	106(2): 807-815
Starner & Goh	2012	Detections of the Neonicotinoid Insecticide Imidacloprid in Surface Waters of Three Agricultural Regions of California, USA, 2010-2011	Bulletin of Environmental Contamination and Toxicology	88: 316-321
Stokstad	2012	Field Research on Bees Raises Concern About Low-Dose Pesticides	Science (News Article)	335(6076): 1555
Stokstad	2013	Pesticides Under Fire For Risks to Pollinators	Science (News Article)	335: 1555
Stoner & Eitzer	2012	Movement of Soil-Applied Imidacloprid and Thiamethoxam into Nectar and Pollen of Squash (Cucurbita pepo)	PLoS ONE	7(6):e39114
Stoughton et al	2008	Acute and Chronic Toxicity of Imidacloprid to the Aquatic Invertebrates <i>Chironomus tentans</i> and <i>Hyalella azteca</i> under Constant- and Pulse-Exposure Conditions	Archives of Environmental Contamination and Toxicology	54: 662-673
Szczepaniec et al	2013	Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants	PLoS ONE	8(5): e62620
Taniguchi et al	2012	Honeybee Colony Losses during 2008-2010 Caused by Pesticide Application in Japan	Journal of Apiculture	27(1): 15-27
Tapparo et al	2012	Assessment of the Environmental Exposure of Honeybees to Particulate Matter Containing Neonicotinoid Insecticides Coming from Corn Coated Seeds	Environmental Science and Technology	46(5): 2592-2599
Tisler et al	2009	Hazard identification of imidacloprid to aquatic environment	Chemosphere	76: 907-914
Tomiwaza & Casida	2005	Neonicotinoid Insecticide Toxicology: Mechanisms of Selective Action	Annual Review of Pharmacology and Toxicology	45: 247-268

Tremolada et al	2010	Field Trial for Evaluating the Effects on Honeybees of Corn Sown Using Cruiser and Celest XL Treated Seeds	Bulletin of Environmental Contamination and Toxicology	85: 229-234
van Djik	2010	Effects of neonicotinoid pesticide pollution of Dutch surface water on non-target species abundance	Utrecht University, MSc Thesis	n/a
van Djik et al	2013	Macro-Invertebrate Decline in Surface Waters Polluted with Imidacloprid	PLoS ONE	8(5): e62374
Vidau et al	2011	Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by <i>Nosema ceranae</i>	PLoS ONE	6(6):e21550
Walker	2002	Neurotoxic Pesticides and Behavioural Effects Upon Birds	Ecotoxicology	12: 307-316
Wang et al	2012	Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida	Ecotoxicology and Environmental Safety	79: 122-128
Whitehorn et al	2012	Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production	Science	336: 351-352
Wilde et al	2007	Seed Treatment Effects on Early-Season Pests of Corn and on Corn Growth and Yield in the Absence of Insect Pests	Journal of Agricultural and Urban Entomology	24(4): 177-193
Williamson & Wright	2013	Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees	The Journal of Experimental Biology	In press
Wu et al	2011	Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity	PLoS ONE	6(2):e14720
Wu et al	2012	Honey bees (<i>Apis mellifera</i>) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to <i>Nosema</i> (Microsporidia) infection	Journal of Invertebrate Pathology	109: 326-329
Yanez et al	2013	Determination of seven neonicotinoid insecticides in beeswax by liquid chromatography coupled to electrospray-mass spectrometry using a fused-core column	Journal of Chromatography A	1285: 110-117
Yang et al	2008	Abnormal Foraging Behavior Induced by Sublethal Dosage of Imidacloprid in the Honey Bee	Journal of Economic Entomology	101(6): 1743-1748